
IONM Setting and Practice

in Spine Surgery

에스포항병원 재활의학과 이상억

IONM in Spine Surgery

• Early 1970s

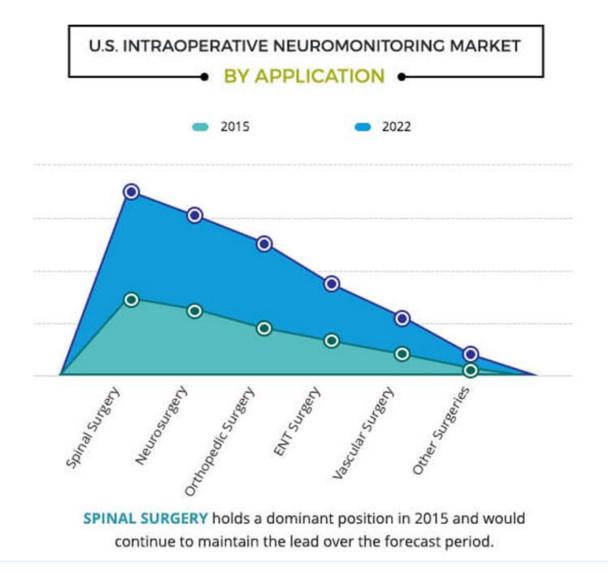
• Epidural recordings of spinal potentials evoked by direct spinal simulation

• Mid-1970s

- Spinal IONM using **somatosensory evoked potentials (SEPs)**
 - Middle- & Long-latency 50 200 ms cortical potentials during orthopedic procedure

• Early 1990s

- Transcranial electrical stimulation as a practical corticospinal technique under anesthesia
- 1981
 - Commercial IONM equipment


Type of surgery in IONM

Type of surgery	Percentage
Carotid	13.5
Intracranial aneurysms, AVM	3.2
Intracranial tumors	6.2
Epilepsy resections	6.4
Movement disorders	9.4
Intracranial CN decompression, CPA tumors	3.8
Cervical spine	19.1
Thoracic spine	8.8
Aorta, cardiac	0.9
Lumbar discectomy, fusion	20.5
Tethered cord, rhizotomy	2.6
Peripheral nerve, plexus, arm, leg	2.5
Peripheral nerve, plexus, arm, leg Middle ear, mastoid, parotid, thyroid	2.5 2.1

Abbreviations: AVM = arterial venous malformation; CN = cranial nerve; CPA = cerebello-pontine angle.

(Nuwer, Cohen, & Shepard, 2013)

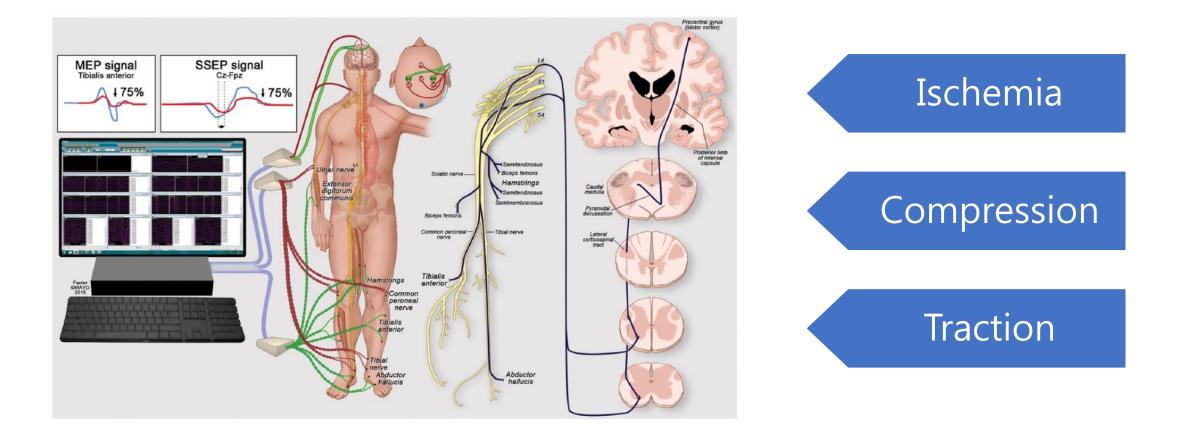
Type of surgery in IONM

Indication

급여기준

- 척수증(Myelopathy)가 있는 경우
- 측만증, 후만증 등의 기형 (Deformity) 가 있는 경우
- 척수의 선천성 또는 종괴성 병변 (척수종양, 척수공동증, 혈관기형, 당김척수증후군 (Tethered cord syndrome) 등이 있는 경우
- 두개저 경추 연접부위, 상부 경추 척추 불안 정이 있는 경우

Risk in spine surgery



- Risk
 - Spinal cord
 - Nerve root
 - Brachial plexus
 - Peripheral nerve
- major neurologic complication
 - Incidence: About 1%

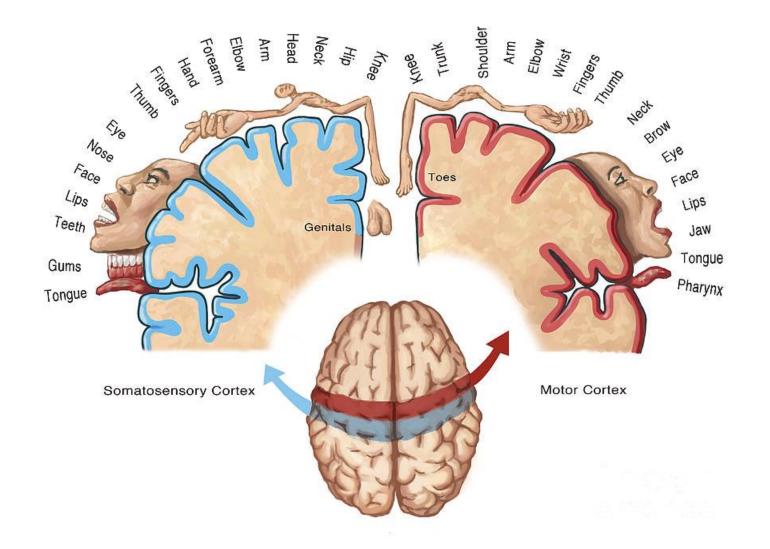
(MacDonald, Al-Enazi, & Al-Zayed, 2008)

(Nuwer & Schrader, 2019)

Injury mechanism in spine surgery

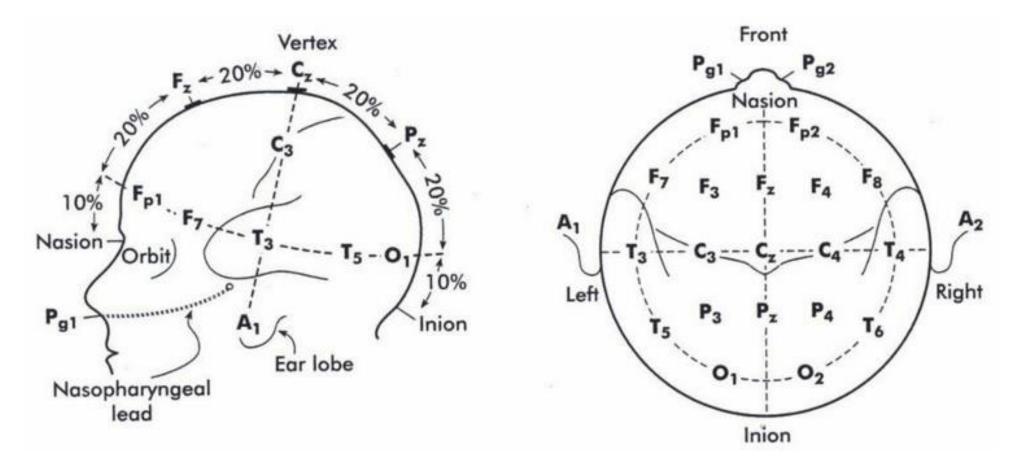
(MacDonald, Al-Enazi, & Al-Zayed, 2008)

IONM modalities in spine surgery

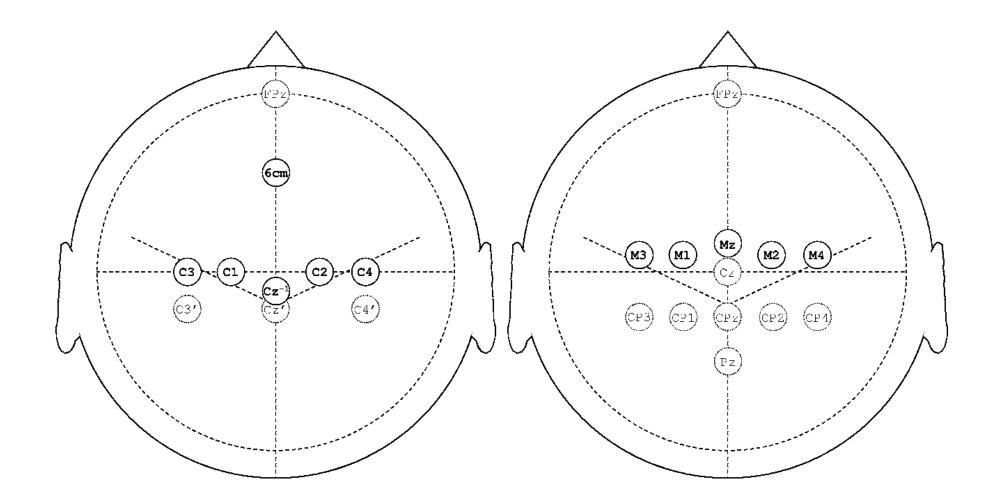

Somatosensory Evoked Potential

Transcranial Motor Evoked Potential

Electromyography

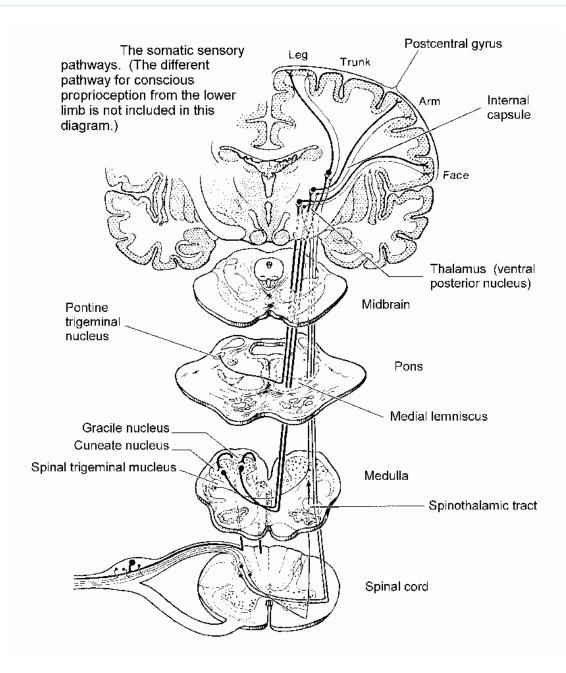

Others

Electrical Potential - Montage



Electrical Potential - Montage

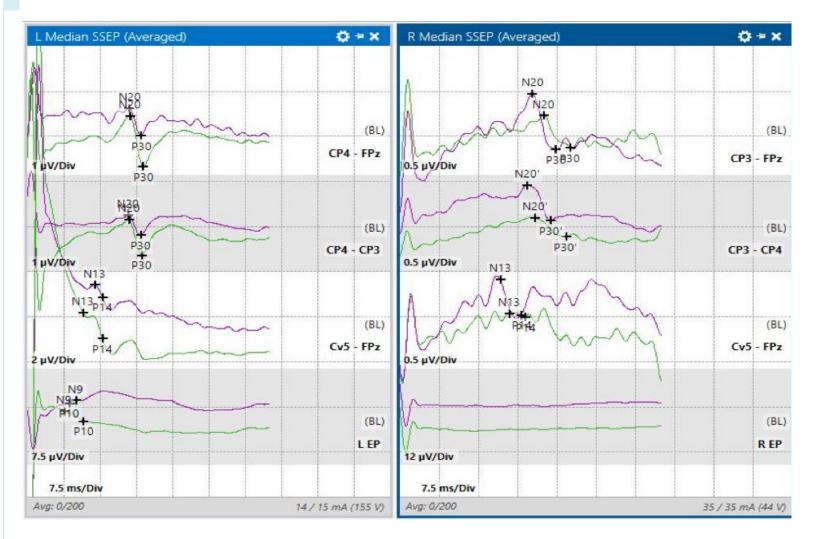
10-20 system - electrodes positioning


Electrical Potential - Montage

SEP

- Spinothalamic tract
- Spinal Dorsal Column

- Upper extremity
 - Median (or Ulnar) nerve
- Lower extremity
 - Posterior tibial (or Peroneal)nerve



SEP stimulation & recording parameters

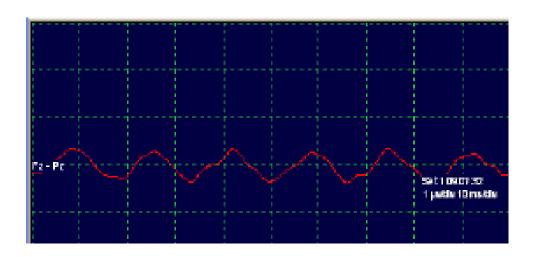
	Median nerve	Tibial nerve
Pulse width	300 (200–500) μs	300 (200–500) μs
Intensity	max. 20–25 mA	max. 25–30 mA
Stimulation rate	5.3 Hz	5.3 Hz
Recording sites	C3′, C4′ (C5) vs Fpz	Cz (lower cervical) vs Fpz
Sweep length	50 ms post stim	100 ms post stim
Averages	150-250	150-250
Band pass	30–3000 (500) Hz	30–3000 (500) Hz

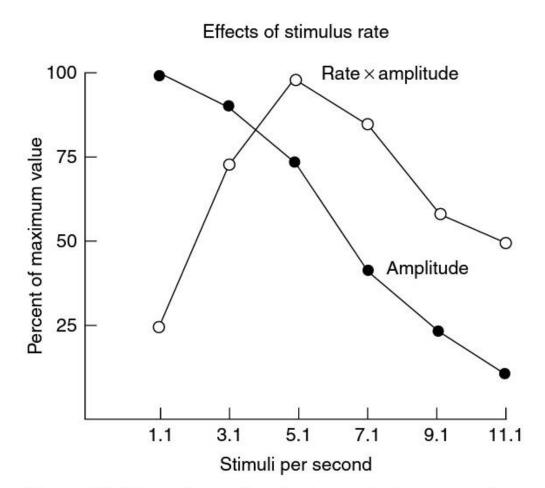
(Deletis & Shilis, 2002)

SEP

Scalp Cortical function Scalp Cortical function Cortical function Brainstem Erb's Brachial Plexus

2021-03-09


Alarm or Alert for SEP changes


	Amplitude reduction	Latency increase	Reproducibility
Breitner and Matzen, 1985	Instability or loss of SEP	N/A	N/A
Brown and Nash, 1985	>50%	>3 ms	Persistent change over 15 minutes
Koht <i>et al.</i> , 1985	≥50%	≥10%	Over two successive recordings
Young and Berenstein, 1985	>Baseline variation	N/A	Over three recordings or 5 minutes
Nuwer, 1986	50%	N/A	N/A
Dawson <i>et al.</i> , 1991	50%	10%	N/A
Nuwer, 1999	50%	>5%	N/A
Seyal and Mull, 2002	>50%	>5-10%	N/A
MacDonald <i>et al.,</i> 2003	"amplitude alteration occurring abruptly or as a trend"	N/A	"clearly exceeding trial-to-trial variability"
Chen <i>et al.,</i> 2004	50%	10%	Compared with baseline recordings obtained after anesthesia induction
Schwartz <i>et al.</i> , 2007	> or equal to	Specifically not used to issue an alert	N/A
Strommen, 2009	50%	5%	N/A

Aliasing SEP

• Most common noise frequency

• 60 Hz

Figure 6.1 Effects of increasing stimulus rate for lower extremity SEPs. As the rate increases, the EP amplitude decreases. The product of rate and amplitude shows the trade-off between advantageous increase in speed of testing and disadvantageous loss of amplitude. In this case, 5.1 per second appeared to be the best compromise between speed and attenuation (from Nuwer and Dawson, 1984a, with permission).

						Nois	e Frequenc	;y					
Rep Rate	60	120	180	240	300	360	420	480	150	330	2500	2800	3000
33.27	1.803	3.607	5.410	7.214	9.017	10.821	12.624	14.427	4.509	9.919	75.143	84.160	90.171
33.28	1.803	3.606	5.409	7.212	9.014	10.817	12.620	14.423	4.507	9.916	75.120	84.135	90.144
33.29	1.802	3.605	5.407	7.209	9.012	10.814	12.616	14.419	4.506	9.913	75.098	84.109	90.117
33.30	1.802	3.604	5.405	7.207	9.009	10.811	12.613	14.414	4.505	9.910	75.075	84.084	90.090
33.31	1.801	3.603	5.404	7.205	9.006	10.808	12.609	14.410	4.503	9.907	75.053	84.059	90.063
33.32	1.801	3.601	5.402	7.203	9.004	10.804	12.605	14.406	4.502	9.904	75.030	84.034	90.036
33.33	1.800	3.600	5.401	7.201	9.001	10.801	12.601	14.401	4.500	9.901	75.008	84.008	90.009
33.34	1.800	3.599	5.399	7.199	8.998	10.798	12.597	14.397	4.499	9.898	74.985	83.983	89.982
33.35	1.799	3.598	5.397	7.196	8.996	10.795	12.594	14.393	4.498	9.895	74.963	83.958	89.955
33.36	1.799	3.597	5.396	7.194	8.993	10.791	12.590	14.388	4.496	9.892	74.940	83.933	89.928
33.37	1.798	3.596	5.394	7.192	8.990	10.788	12.586	14.384	4.495	9.889	74.918	83.908	89.901
33.38	1.797	3.595	5.392	7.190	8.987	10.785	12.582	14.380	4.494	9.886	74.895	83.883	89.874
33.39	1.797	3.594	5.391	7.188	8.985	10.782	12.579	14.376	4.492	9.883	74.873	83.857	89.847

Frequency of Noise / Rep Rate = Whole # + 0.5

Ok if between 0.25 - 0.75 but best if closer to 0.5.

						Noise	Frequency	1					
	60	120	180	240	300	360	420	480	150	330	2500	2800	300
msec)	16.66	8.33	5.55	4.16	3.33	2.77	2.38	2.08	6.66	3.03	0.4	0.35	0.3
	-												
To de	etermine th	e frequency	of the noise										
Mean	ure the Pe	ak to Peak in	terval (msec) of the nois	e								
		ace in the E											
				:) of the nois indow.	e								

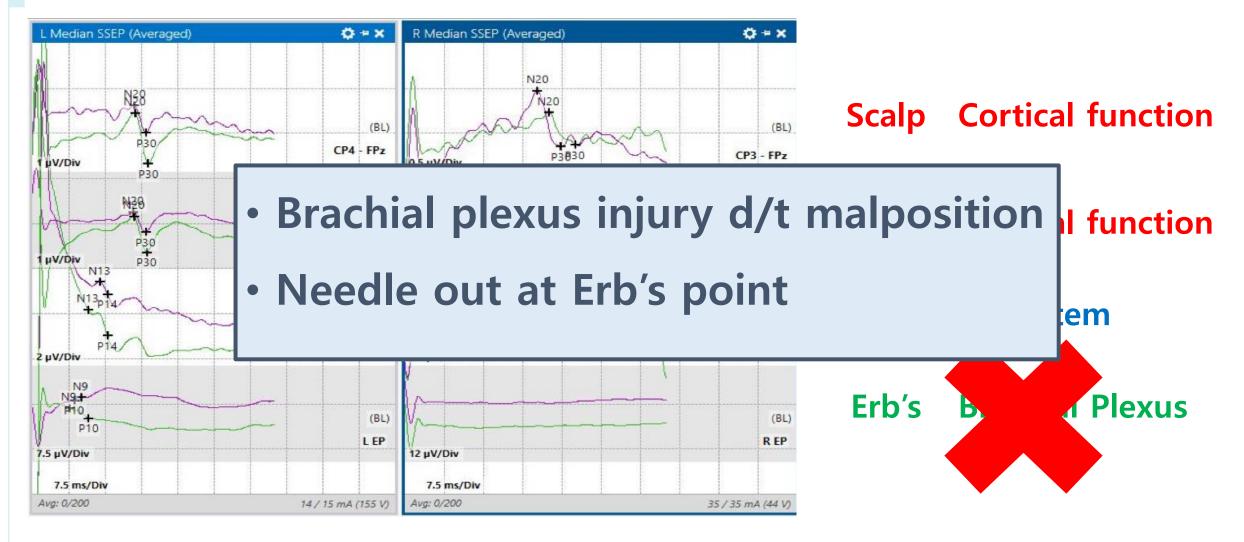
Automatic Stimulation Rate Adjustment

Automatically adjusts stimulation rate in accordance to the known frequencies.

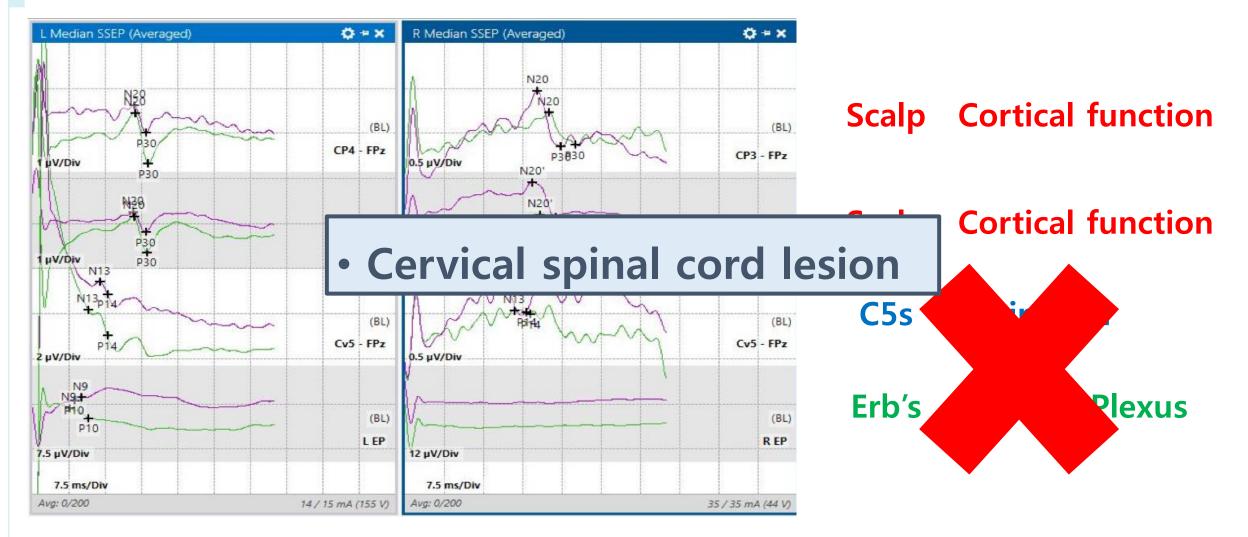
Manage Stimulator Settings

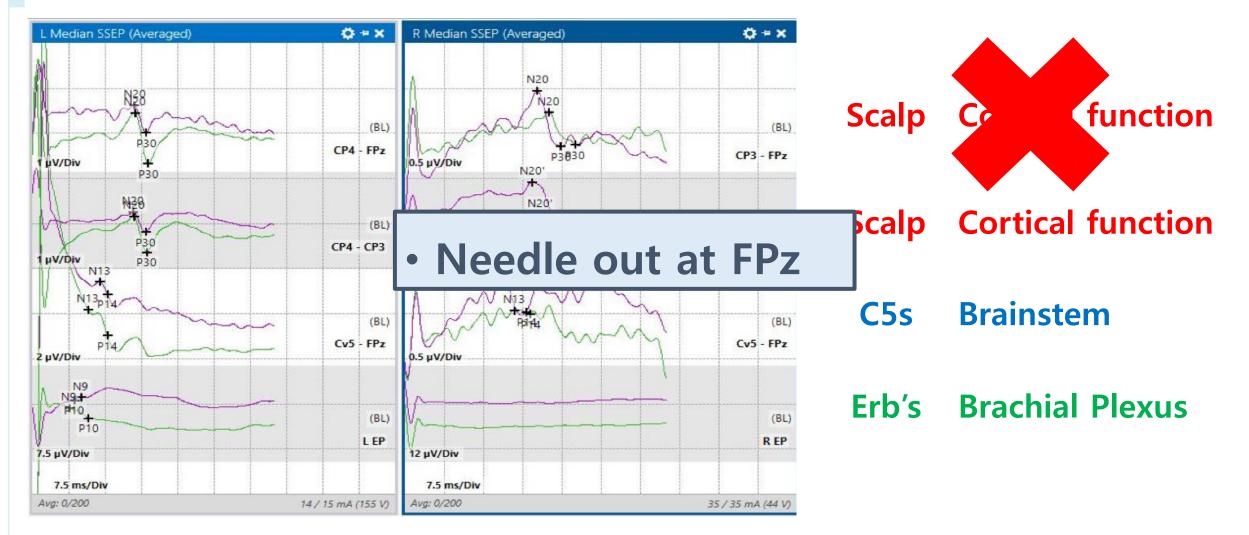
Allows user to manually find optimal stimulation rates given their choice of noise frequencies.

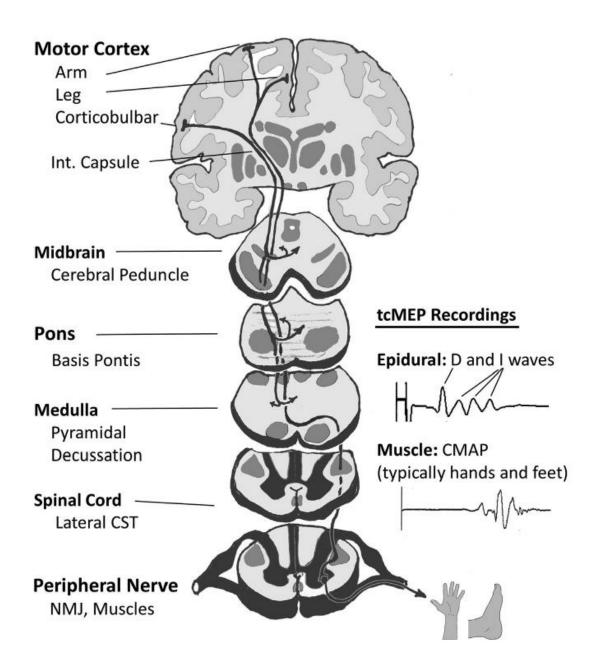
Parameter	Value 🦟		frequencies and their relative
Parameter Noise Frequencies (Hz)	60.0	Close	amplitudes, ran
Noise Amplitudes	60.0		of acceptable s
Sweeps per Average	128		rates and a few
Starting Stim Rate [Hz]	2.350		other pertinent
Maximum Rate Change [Hz]	0.200		parameters
Stimulator Jitter [Hz]	0.003		
		Recalculate	
2.178 Hz · 0.45			
Apply Best	Apply User	1	
hope both]	
	Total Noise Amplitude		
8	Total Noise Amplitude		-
	Total Noise Amplitude		
8	Total Noise Amplitude		
	Total Noise Amplitude	<u></u>	
	Total Noise Amplitude	<u>, , , , , , , , , , , , , , , , , , , </u>	
	Total Noise Amplitude		
	Total Noise Amplitude		
	Total Noise Amplitude		
2.150	Total Noise Amplitude	2.350	

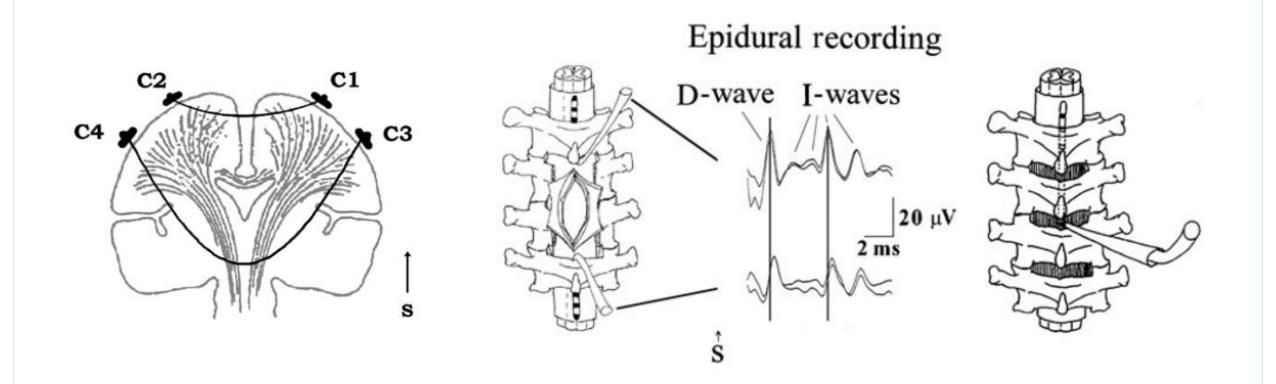

TABLE 2.5 Localization of Neural Dysfunction Based on Pattern of SEP Changes*

Locus of neural insult	Associated pattern of SEP degradation
Spinal cord dysfunction	Loss of subcorticaland cortical signals, Erb's point intact
Limb malpositioning	Unilateral loss of Erb's point, subcortical and cortical signals
Cerebral ischemia (carotid retraction)	Unilateral cortical loss, intact subcortical signal
Anesthetic effect	Global cortical loss, intact subcortical signals

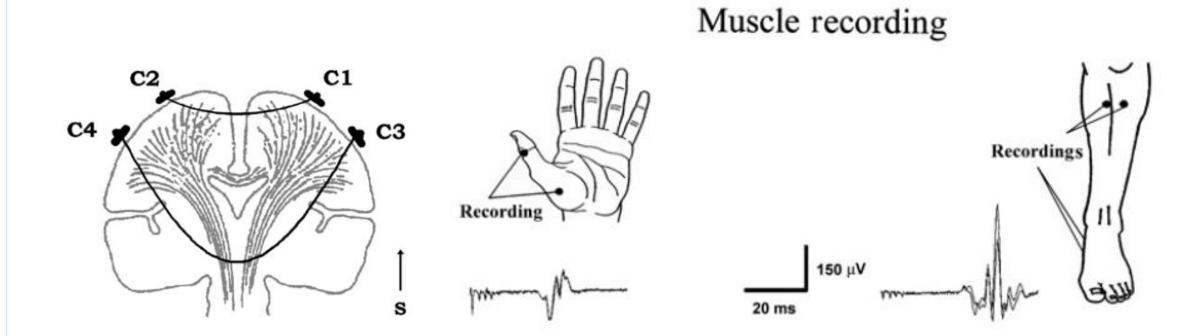


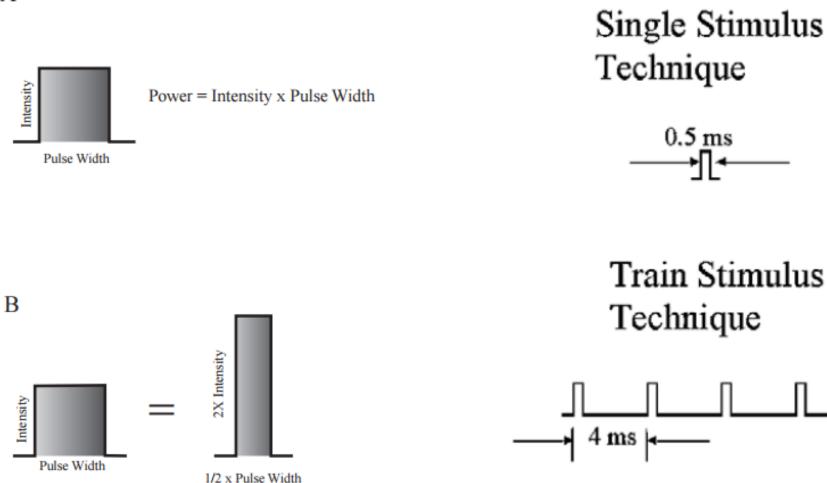


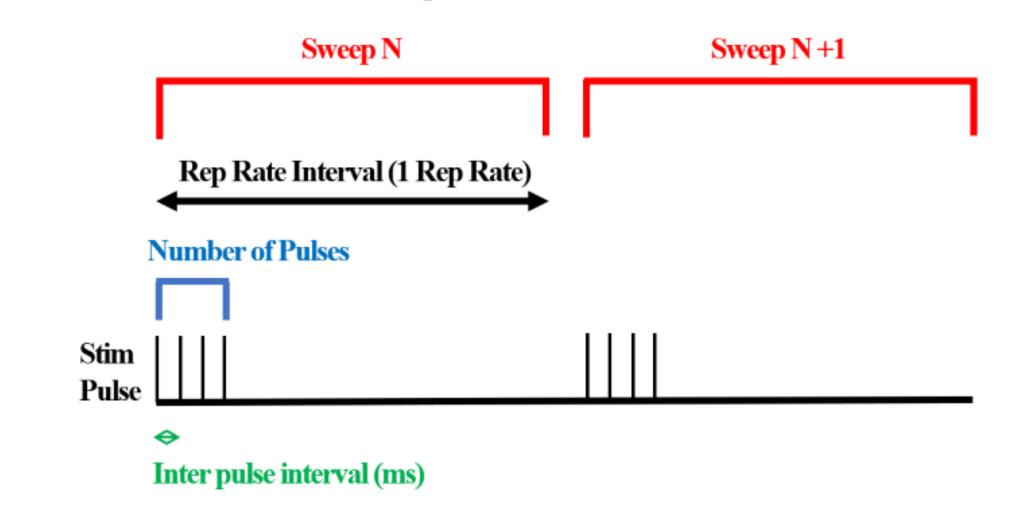


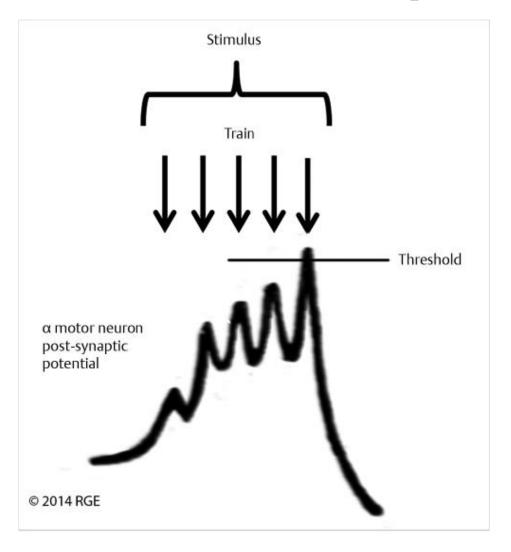

Trancranial MEP

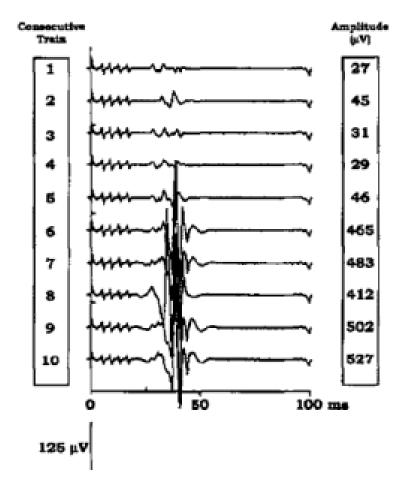
- Corticospinal tract
- Anterior Horn Cell

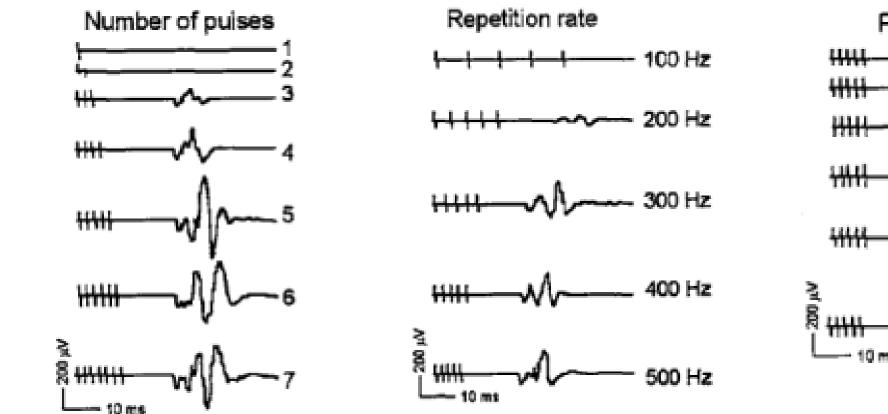

- Epidural recordings
- Muscle recordings

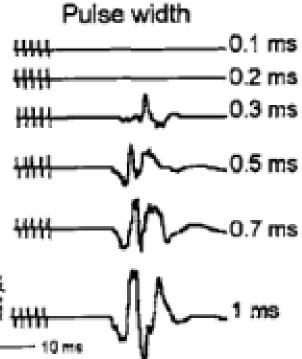

Transcranial MEP

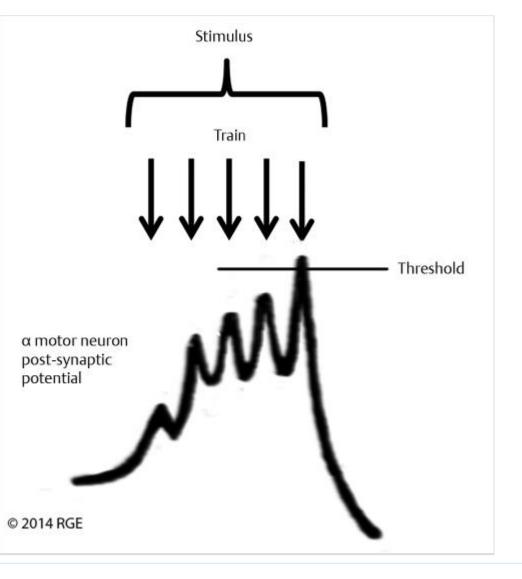


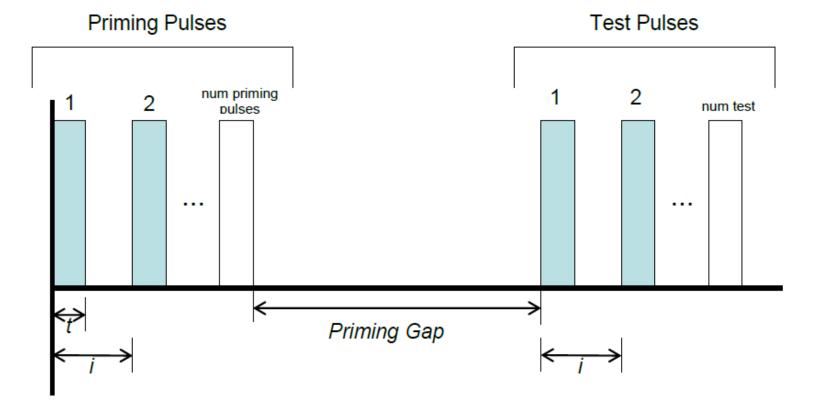

Transcranial MEP





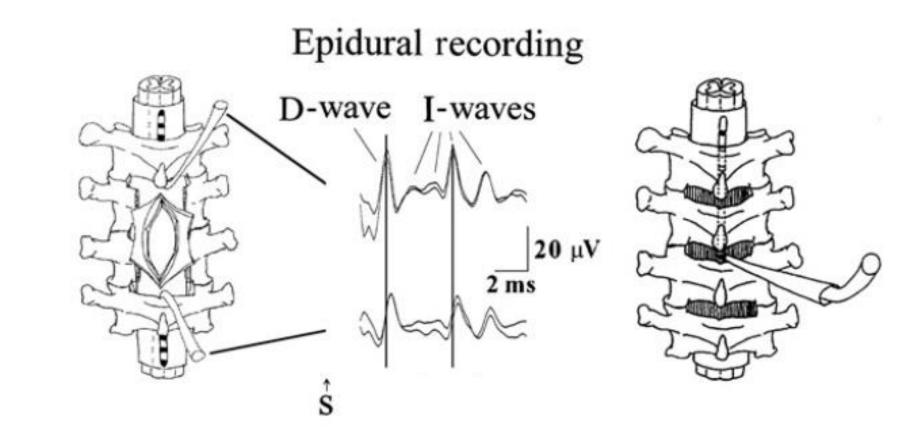




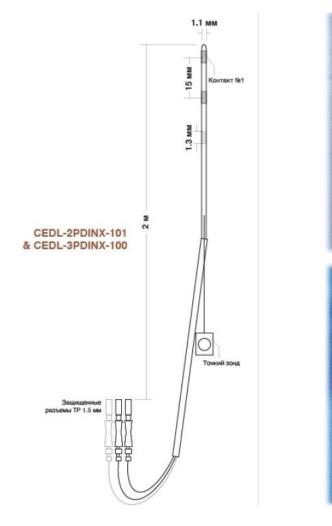


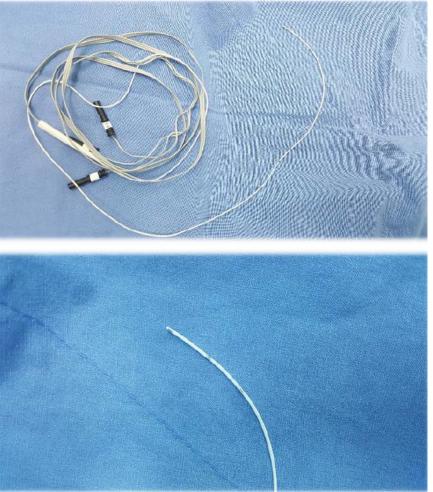
MEP stimulation in vulnerable patient

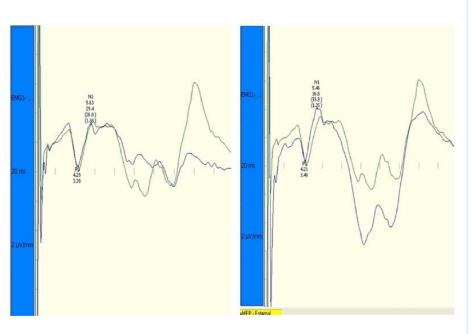
- Excitatory Post-Synaptic Potential
- Facilitation
- Prime

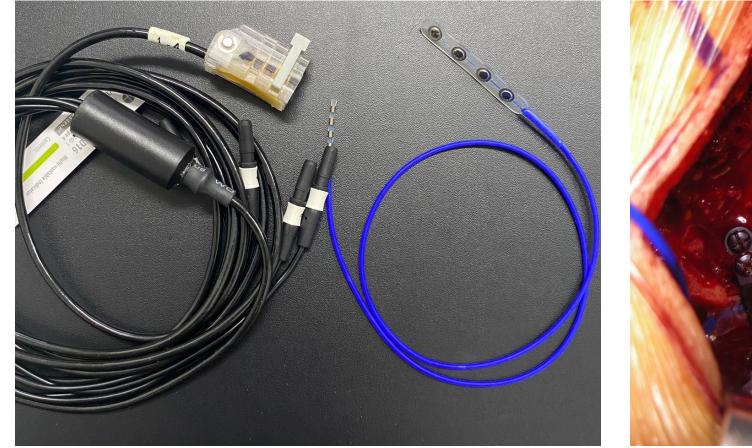


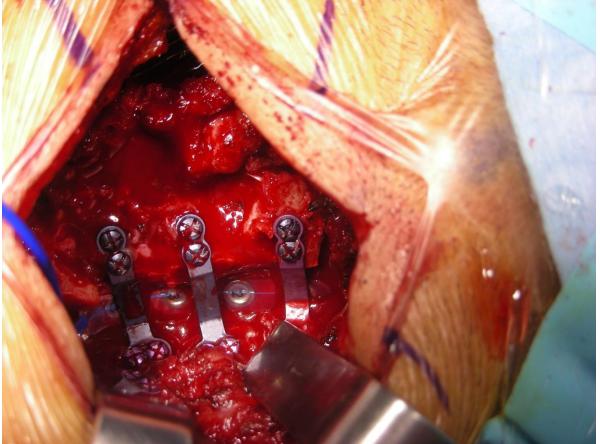
MEP stimulation in vulnerable patient




t = Pulse Duration – Fixed at 50us *i* = Interpulse Interval (pulse rate) Note: Num Priming Pulses + Num Test Pulses cannot exceed 9 total.


D wave





D wave

D wave

Advantages

Relatively immune to anesthesia

Rapid reproducibility

Excellent correlation to motor outcome

Disadvantages

Unclearly localization

No synaptic activity

Invasive electrode complication

Alarm Criteria Amplitude reduction > 50%

Muscle MEP

Spinal root myotomes

C1 – None

- C2 Sternocleidomastoid
- C3 Trapezius, sternocleidomastoid
- C4 Trapezius, levator scapulae
- C5 Deltoid, biceps
- C6 –Biceps, triceps, brachioradialis, pronator teres, flexor carpi radialis (FCR)
- C7 –Triceps, pronator teres, FCR, forearm extensors
- C8 –Triceps, ulnar forearm muscles, all hand intrinsic muscles (incl. abductor pollicis brevis, first dorsal interosseous, adductor digiti minimi)

 T1 –Hand intrinsic muscles, flexor carpi ulnaris
 T2,T3, T4, T5, T6 – Intercostal muscles, paraspinal muscles

- T6,T7, T8 Upper rectus abdominis, paraspinal muscles, intercostal muscles
 T8,T9, T10 – Middle rectus abdominis, paraspinal muscles, intercostal muscles
 T10, T11, T12 – Lower rectus abdominis, paraspinal muscles, intercostal muscles
- L1 –Quadratus lumborum, paraspinals, cremaster ± iliopsoas ± internal oblique
- L2 –Iliopsoas, adductor longus, quadriceps, adductor magnus
- L3 –Quadriceps, adductor longus, adductor magnus, iliopsoas
- L4 –Quadriceps, tibialis anterior, adductor longus, adductor magnus, iliopsoas
- L5 –Tibialis anterior, peroneus longus, adductor magnus
- S1 Gastrocnemius, abductor hallucis
- S2 Gastrocnemius, abductor hallucis
- S2-S5 Anal sphincter, urethral sphincter

Muscle MEP

5 pulses with 4 ms IPI

(Good starting point for spine surgery)

Published Stimulus Parameters

```
3 – 8 rectangular pulses
```

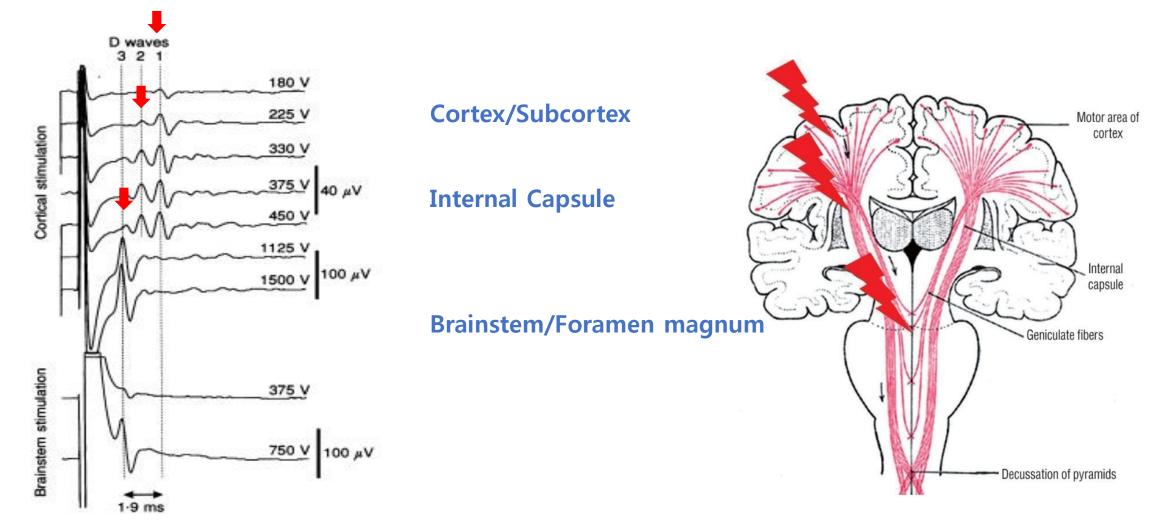
1-5 ms IPI

75 – 900 V (up to 0.9 A) intensity

Muscle MEP

Spine

Increasing the intensity of stimulation gradually


The MEP wave is interfered by the surgical procedure

Brain

If possible, avoid increasing the intensity of stimulus

It is possible to happen false negative results because of activation in deeper subcortical motor pathway

Excitation of the CT axons

(Rothwell et al, 1994)

Alarm criteria of muscle MEP

 Increases of more than 100 V om the threshold for obtaining of muscle MEP

• Loss of the muscle MEP

• Amplitude reduction > 50 %

• Amplitude reduction > 80 %

Safety & Complication of MEP

Stimulation Limitations of the TcMEP Modality

Energy limitation per pulse

50mJ per pulse on a 1000 Ohm Load (Safety requirement according to IEC60601-2-40 – collateral standard)

Energy limitation per time period

Maximum = 100mJ per second distributed in maximum 9 pulses on a 1000 Ohm load.

Safety & Complication of MEP

Voltage set [V]	TOTAL ENERGY [mJ]									RMS Voltage [V _{R.M.S.}]	RMS Current ¹ [A _{R.M.S.}]
1000	50	100								10.00	0.0100
900	40.5	81								9.00	0.0090
800	32	64	96							9.80	0.0098
700	24.5	49	73.5	98						9.90	0.0099
600	18	36	54	72	90					9.49	0.0095
500	12.5	25	37.5	50	62.5	75	87.5	100		10.00	0.0100
400	8	16	24	32	40	48	56	64	72	8.49	0.0085
300	4.5	9	13.5	18	22.5	27	31.5	36	40.5	6.36	0.0064
200	2	4	6	8	10	12	14	16	18	4.24	0.0042
100	0.5	1	1.5	2	2.5	3	3.5	4	4.5	2.12	0.0021
0	0	0	0	0	0	0	0	0	0	0	0
	1	2	3	4	5	6	7	8	9		
	Number of pulses per train										

NOTES: ¹ Calculated at the maximum number of pulses allowable per voltage settings

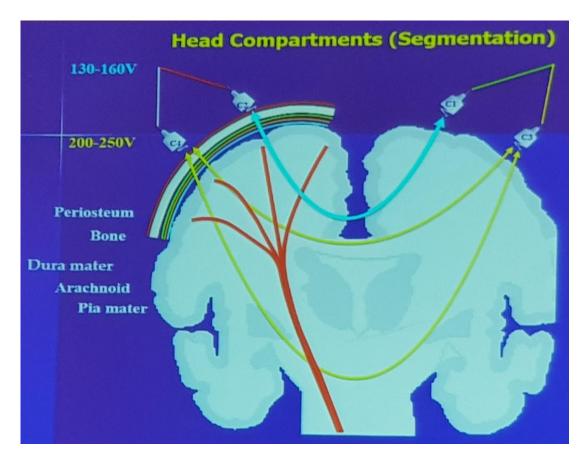
Table 1: Total Energy per train, on a **10000hm** Load and **50us** pulse duration

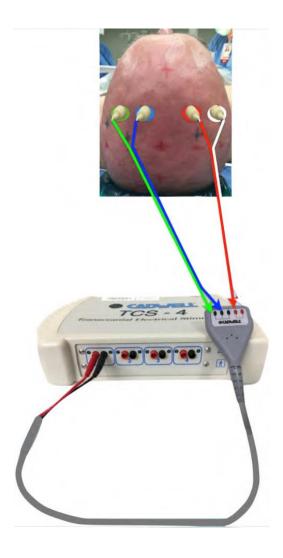
Safety & Complication of MEP

Adverse effects

Jaw contraction (→ Tongue bite)

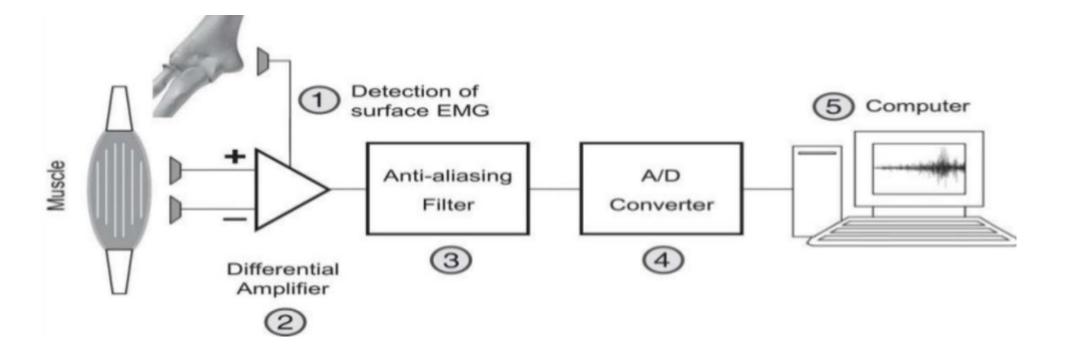
Seizure


Pacemaker with implanted defibrillator (Very high risk of motor injury)


Scalp Burn

Head movement

Linked Quadri-Polar TcMEP



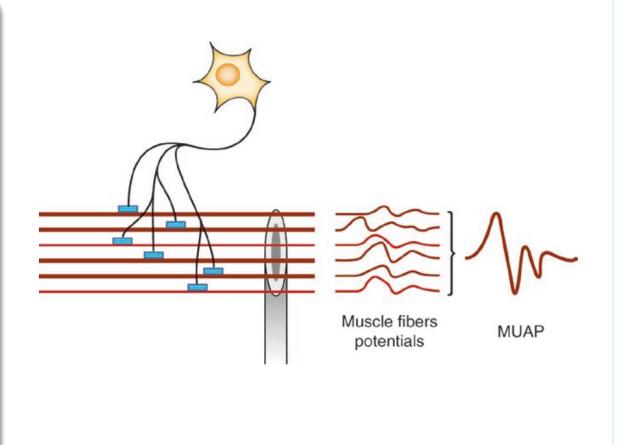
Neurological Monitoring Associates, LLC, Milwaukee, Wi

Electromyography (EMG)

 The recording of compound muscle action potential (CMAP) or electrical activity produced by skeletal muscle

Electromyography (EMG)

Motor Unit Action Potential (MUAP)

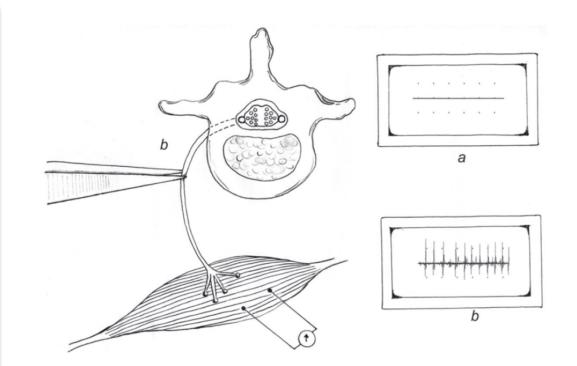

• Individual muscle fibers are organized into **motor units**, which are groups of muscle fibers that are activated by the same motor endplate.

Stimulation of an individual axon sufficient to reach the **threshold for action potential firing**

Activation of a motor unit

muscular contraction

• The individual muscle fiber action potentials can be recorded in **sum**, and this waveform is the motor unit action potential (MUAP)


Anatomical & Physiological Basis

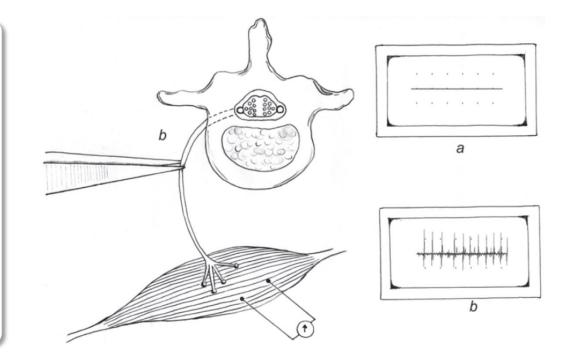
Surgical irritation of axon

Surgical irritation of axons is sufficient Axonal depolarization

Activation of the muscle fibers

Depolarization of a single axon leads to single MUAP recorded as a "spike" on EMG

Anatomical & Physiological Basis


Surgical irritation of axon

- Pre-existing condition of the nerve
 - Degree & mechanism of neural

irritation

• Integrity of distal neuromuscular

function

Electromyography (EMG)

Spinal root myotomes

C1 – None

- C2 Sternocleidomastoid
- C3 Trapezius, sternocleidomastoid
- C4 Trapezius, levator scapulae
- C5 Deltoid, biceps
- C6 –Biceps, triceps, brachioradialis, pronator teres, flexor carpi radialis (FCR)
- C7 –Triceps, pronator teres, FCR, forearm extensors
- C8 –Triceps, ulnar forearm muscles, all hand intrinsic muscles (incl. abductor pollicis brevis, first dorsal interosseous, adductor digiti minimi)

 T1 –Hand intrinsic muscles, flexor carpi ulnaris
 T2,T3, T4, T5, T6 – Intercostal muscles, paraspinal muscles

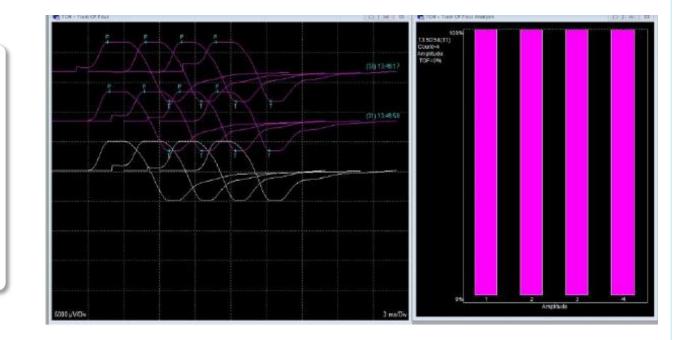
- T6,T7, T8 Upper rectus abdominis, paraspinal muscles, intercostal muscles
 T8,T9, T10 – Middle rectus abdominis, paraspinal muscles, intercostal muscles
 T10, T11, T12 – Lower rectus abdominis, paraspinal muscles, intercostal muscles
- L1 –Quadratus lumborum, paraspinals, cremaster ± iliopsoas ± internal oblique
- L2 –Iliopsoas, adductor longus, quadriceps, adductor magnus
- L3 –Quadriceps, adductor longus, adductor magnus, iliopsoas
- L4 –Quadriceps, tibialis anterior, adductor longus, adductor magnus, iliopsoas
- L5 –Tibialis anterior, peroneus longus, adductor magnus
- S1 Gastrocnemius, abductor hallucis
- S2 Gastrocnemius, abductor hallucis
- S2-S5 Anal sphincter, urethral sphincter

Intraoperative EMG monitoring

Free running EMG

Passive muscle recordings

Detecting irritation of Cranial Nerve or Spinal root Stimulated EMG

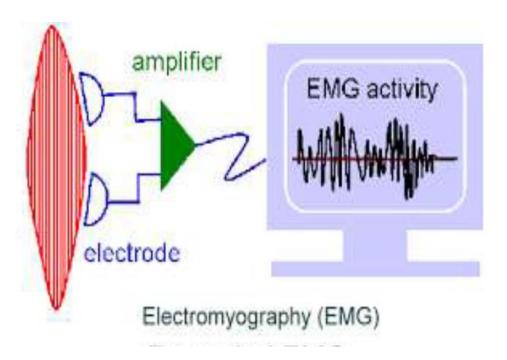

Electrical stimulation of neural elements or hardware

The purposes of assessing function

Anesthesia

Neuromuscular blocker

- Significantly **attenuate motor activity**
- Should be **avoid** as much as possible
- > 2 response (or 80%) Train of Four

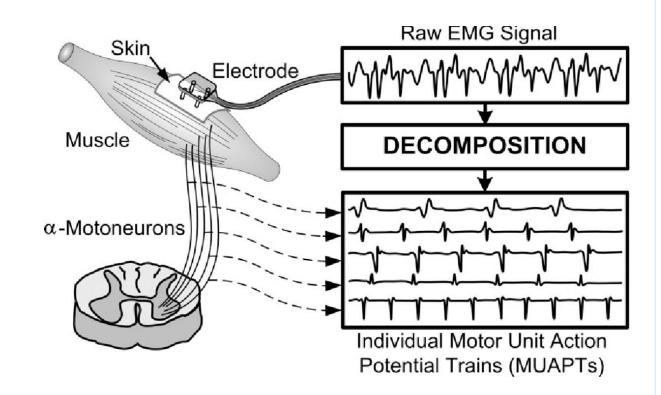

Ischemia

usually does not induce action potential firing
poorly detected by EMG

Patterns of EMG activity

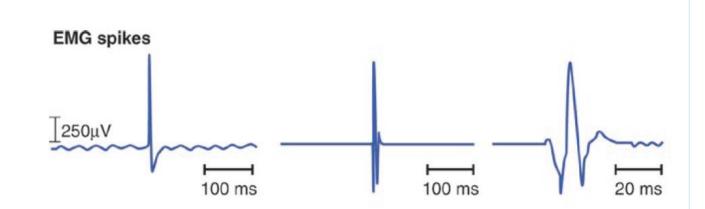
Motor Unit Action Potential (MUAP)

Neurotonic Discharge

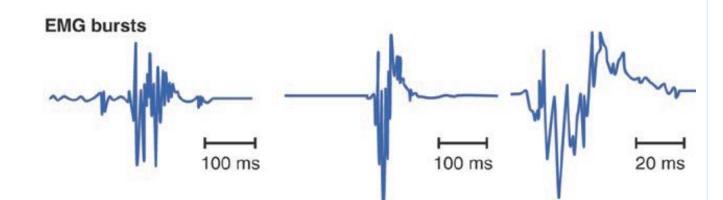


MUAP

Reflex activity of anterior horn cells Incomplete relaxation with voluntary firing


> Increased muscle tone Insufficient patient sedation

> > Semi-rhythmic pattern


Spike

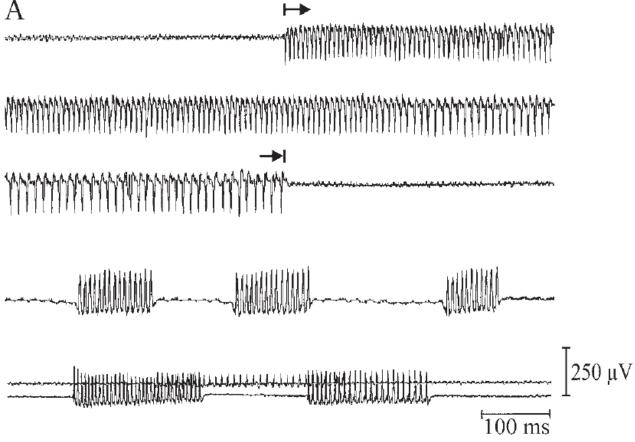
- Random activation of one or a few motor units during surgery
 - Incidental contact with the neural elements
- No clinically significant
- Bi- or triphasic potentials
- one large peak ($\leq 2000 \ \mu V$)

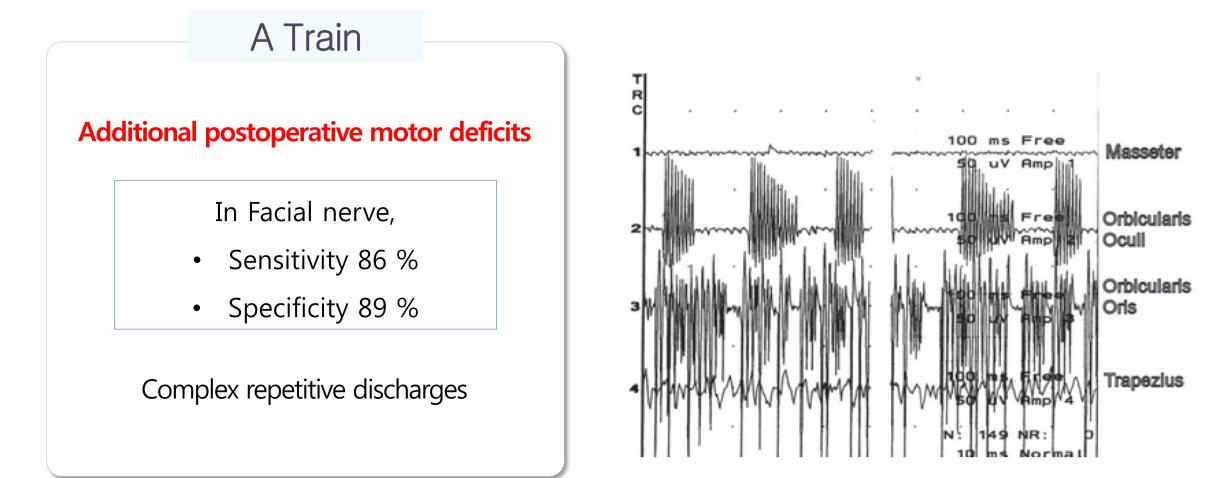
Bursts

- Random activation of several motor units
- Synchronous
- Nonrepetitive discharges
- **Poly**phasic potentials
- > **5000** μ V of amplitude
- Mechanical contact activity
- Free irrigation with Ringer's solution

Train

- Sustained periodic firing of one or more motor units
- Lasting from **seconds to minutes**
 - The length of time: the **degree of nerve irritation**
 - > 10 seconds Postoperative deficits
- Variable
- **Repetitive** discharges
- Nerve Traction or Pressure
- Direct mechanical trauma
- Irrigation


Training

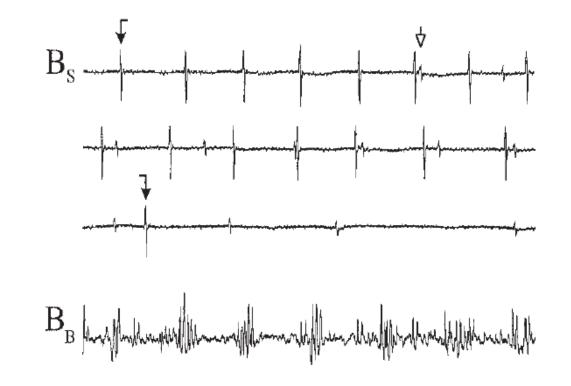


Neurotonic discharge

A Train А **Sinusoidal Pattern** Short duration with a more or less rhythmic sequence It always started **suddenly** High Frequency (60 - 210 Hz)Amplitude $(100 - 200 \mu V)$ Duration (milliseconds - several seconds)

B Train

Regular or Irregular sequence


of single components

maximum intervals of 500 msec

Several minutes - hours

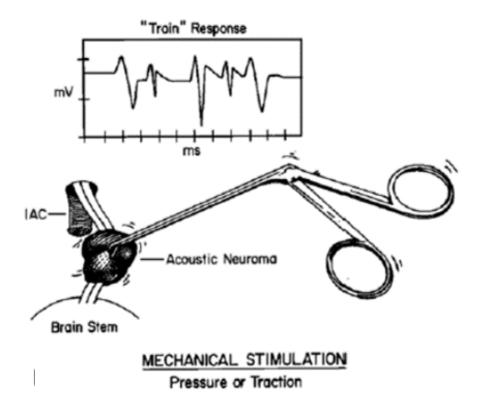
Myokymic Discharges

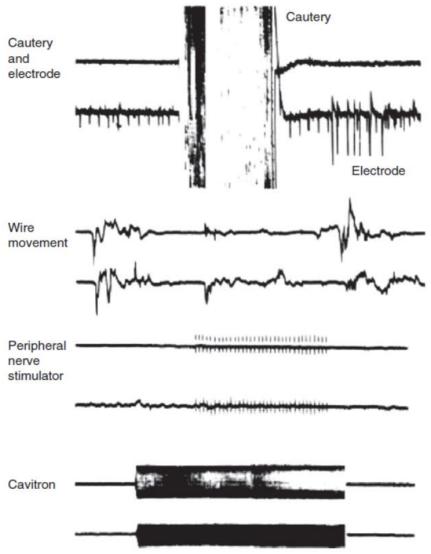
Pathophysiological mechanism is not clear

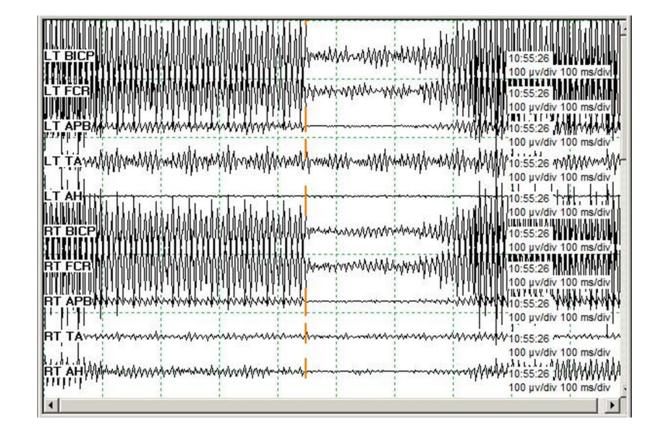
C Train

Continuous irregular EMG activity

Numerous overlapping components

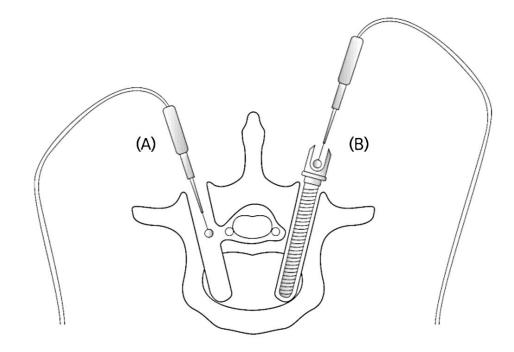

20 to more than 5000 μV


Bursts


Train



- Cautery
- Peripheral nerve stimulator (SEP)
- Others


Stimulated (Triggered) EMG

Stimulated EMG is used for primary reasons

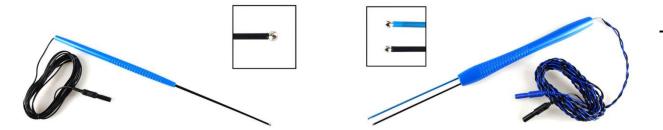
Identify a nerve or nerve root of interest - Anatomical variation of the motor nerves

Assess the functional integrity of a nerve or nerve root

Assess the placement of pedicle screws

Fig. 1. Indirect nerve root stimulation. (A) Insertion tract stimulation, (B) Pedicle screw stimulation.

Stimulated (Triggered) EMG


Identifying nerves and nerve roots

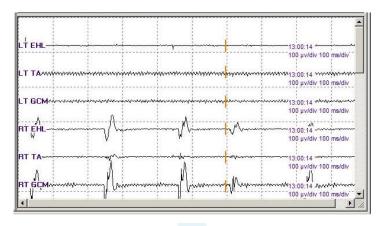
- Direct Electrical Stimulation
 - A branch of a cranial nerve
 - the level of a spinal nerve root

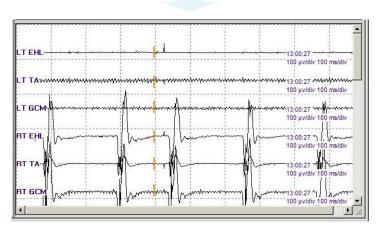
- Stimulation
 - Hand-held probe, insulated to the tip
 - Square wave pulses

2 – 3.5 Hz

- Pulse width of 50-100 µsec

Stimulated (Triggered) EMG

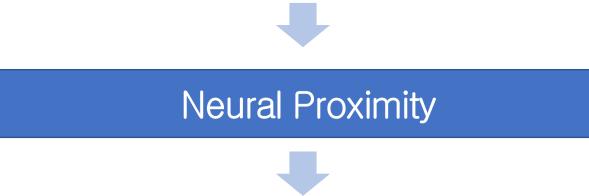

Identifying nerves and nerve roots


the locus of stimulation approaches the nerve

- CMAP
 - Lower the threshold
 - Shorter latency

nerves

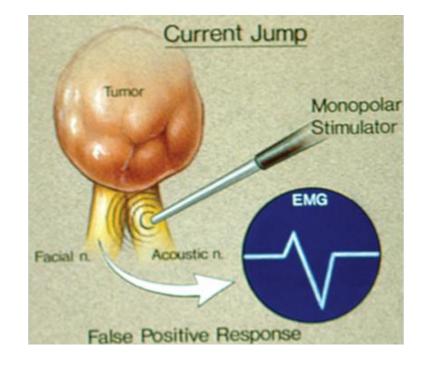
- Higher amplitude
- Less spread of excitation to near by



Identifying nerves and nerve roots

- Beginning at 0.00 mA, the current is carefully increased until a CMAP is recorded with minimal spread to other nerves/muscles.
- Stimulation Intensity
 - Healthy nerve < 2 mA
 - Pathologic nerve & nerve roots (Previously injured, chronically compressed, etc.) ≥ 3mA
- Latency
 - Cranial nerve: 2 10 ms
 - Spinal nerve root: 15 25 ms

The surgeon should dissect with caution

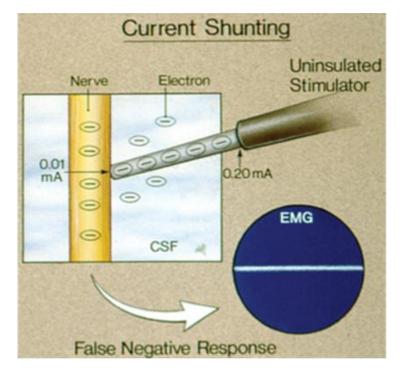

Identifying nerves and nerve roots

False Positive errors (Current Jump)

volume conduction of current through nearby tissues

CMAP recorded from **unexpected location** due to **unintended depolarization of a different nerve**

- Using **bipolar probe**
- lowest monopolar current levels possible to obtain a response


(Kircher & Kartush, 2012)

Identifying nerves and nerve roots

False Negative errors (Current Shunting)

The presence of **CSF** and **Blood** in the field **no CMAP** recorded because **current bypasses** the target nerve **and** flow directly to the return electrode

- Electrical insulation along the stimulator's shaft
- Applying **suction** during stimulation

(Kircher & Kartush, 2012)

Assessing the Functional Integrity of a Nerve or Nerve Root

Direct Electrical Stimulation

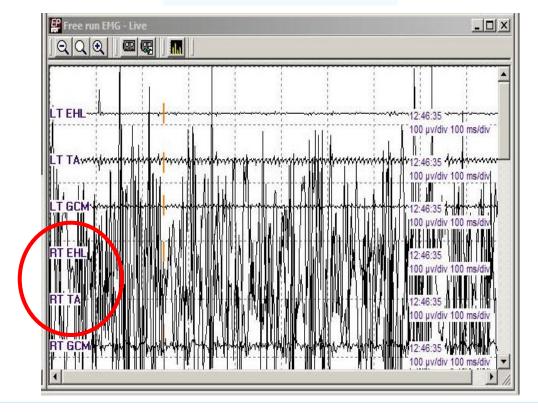
Stimulation Threshold

- Healthy nerves: < 2 mA (often < 1mA)
- Pathologic nerves: Higher threshold

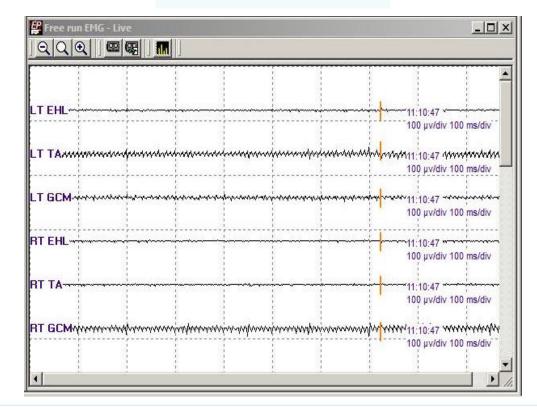
Structure	threshold (mA)
Normal nerve root	(0.2–5.7)
Chronically compressed	
nerve root	6.3–20
	(Maguire et al., 1995)

Stimulus

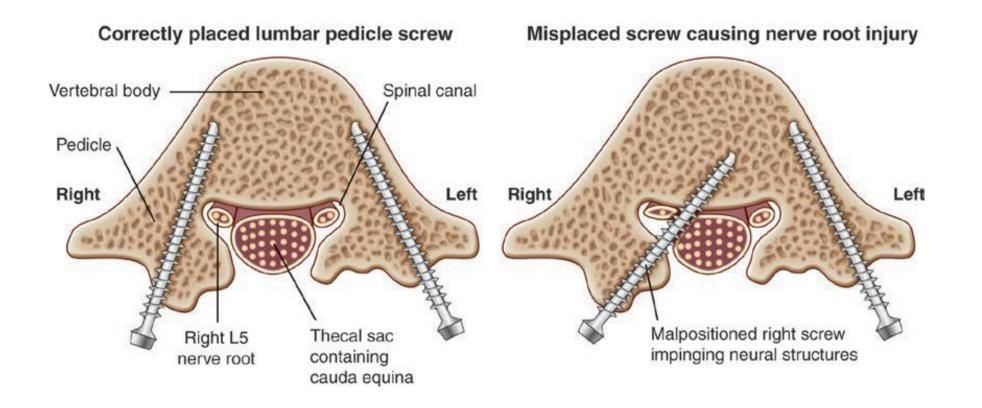
Direct nerve root stimulation



Bilateral L5/S1 Extraforaminal lesion


Direct spinal root stimulation

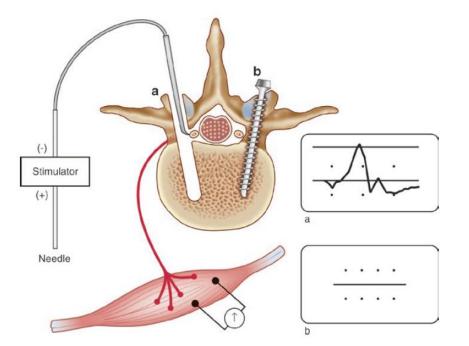
Electrodiagnostic Study: Bilateral chronic L5 radiculopathy


Rt. L5 root (6 mA)

Lt. L5 root (9 mA)

Stimulating Pedicle Screws

Stimulating Pedicle Screws


Bone

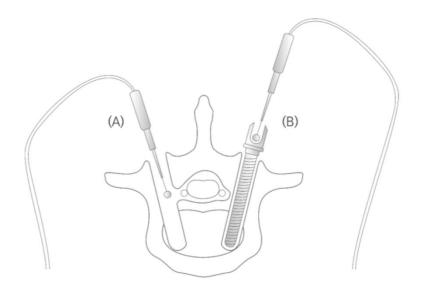
- Electrical insulator
- Limit the amount of current transfer between stimulated screw and the neural element

 Breach in the pedicle wall
 Image: Construction of the second second

Stimulating Pedicle Screws

- If a large amount of current is required for activation of the nerve roots, it is a reasonable assumption that the **bone is** contact.
- Lower stimulation thresholds indicate a potential breach

Stimulating Pedicle Screws

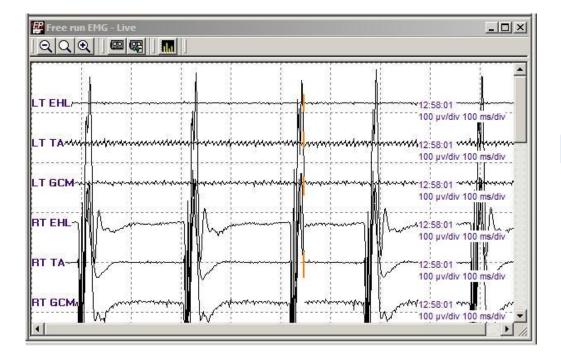

TABLE 2.3 Threshold Values Indicating the Likelihood of Pedicle Screw Malpositioning

	Perforation probable	Perforation possible	Perforation unlikely
Hole	<5 mA	5–7 mA	>7 mA
Screw	<7 mA	7–10 mA	>10 mA

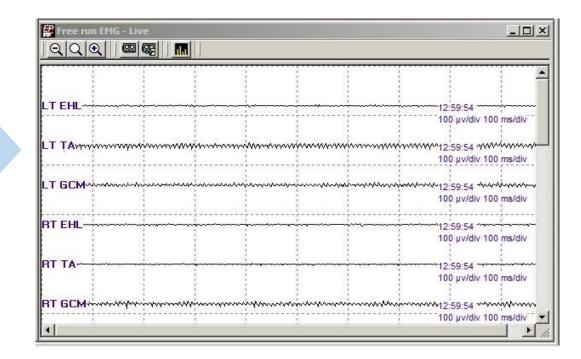
(Husain, 2008)

Stimulating Pedicle Screws

- 1. Stimulation starts at 0 mA
- 2. Increments of **0.5–1 mA** until a **response is seen**
- Stimulation of the **pedicle screw**
- Stimulation of the pilot hole prior to screw placement


Fig. 1. Indirect nerve root stimulation. (A) Insertion tract stimulation, (B) Pedicle screw stimulation.

Pedicle stimulation (6 mA)



Pedicle stimulation (6 mA)

Pedicle stimulation (10 mA)

	Monitoring	Advantages	Limitations	Alarm criteria	Anaesthetic requirements	Sensitivity	Specificity
SSEP	Functional integrity of sensory pathways	Continuous monitoring: firm warning criteria More recording sites, more reliable result. Generally better resistance of anaesthetics than MEP	Signal averaging results in time delay: injury can be irreversible before detection Influence of halogenated and nitrous-oxide-based agents	Latency increase > 10%, signal decrease > 50%	Intravenous anaesthesia, eventually dexmedetomidine	25–92%	96–100%
MEP	Functional integrity of motor pathways	Real-time monitoring, instant, no averaging Reliable even after posterior myelotomy More sensitive to ischemia Less sensitive to electrical noise	Requires total intravenous anaesthesia without neuromuscular blockade Movements Contraindicated in seizures and pace makers Wide warning criteria	Signal decrease > 50–75%	Total intravenous anaesthesia, no halogenated agents or neuromuscular blockade	75–100%	84–100%
EMG	Functional integrity of peripheral nerves	Constant feedback, Combined with SSEP improved specificity, Easy performance and interpretation	High rate of false positives Very sensitive on temp. changes and cautery Rriggered EMG: only insight in pedicle integrity	No firm alarm criteria	Avoidance of neuromuscular blockade	Free-running: 100% Triggered: 99.5%	Free-running: about 23% Triggered: low
Multimodal IONM	All of the above	Both modalities together improve sensitivity and specificity: most reliable	Highly trained personnel Technical requirements Cost		of the above-mentio ols will provide sensi		,

Multimodal IONM

TABLE 1. Statistical analysis^a

	SEP	TCE-MEP	EMG	Combined TCE- MEP and EMG
No. of monitorable cases	10	14	14	14
% monitorable	71.4% ^b	100%	100%	100%
Positive predictive value	1.0	1.0	0.875	0.889
Negative predictive value	0.833	0.75	0.833	1.0
Sensitivity	80%	75%	87.5%	100%
Specificity	100%	100%	83.33%	83.33%

(Skinner et al., 2005)

Multimodal IONM

Table 3 Sensitivity and specificity of intraoperative monitoring

Study name	Year	No. of patients	IOM change	MEP change	SSEP change	Sensitivity and specificity (SSEP)	Sensitivity and specificity (MEP)	No. of new neurological deficits
Plata Bello et al.	2015	75	5 (6.6%)	5	2	(40%; 100%)	(100%; 100%)	-
Appel et al.	2017	381	9 (2.3%)	7	2	(22%; 100%)	(78%; 100%)	2
Hilibrand et al.	2004	427	15 (3.5%)	12	3	(25%; 100%)	(100%; 100%)	2
Sakaki et al.	2012	357	196 (55%)	196	_	_	(100%; 83.2%)	0
Oya et al.	2017	135	12 (8.9%)	12	0	-	(100%; 98.4%)	-

IOM intraoperative monitoring, SSEP somatosensory evoked potential, MEP motor evoked potential

(Di Martino et al., 2019)

Multimodal IONM

- The base hypothesis advocated in this study is that the combination of SSEP and MEP might be more sensitiveand specific than IONM.
- On the basis of available evidence, we support use of MIOM in decompression cervical spine surgery in patients affected by degenerative spinal stenosis, since it is associated with high specificity and sensitivity for detection of intraoperative neural damage.

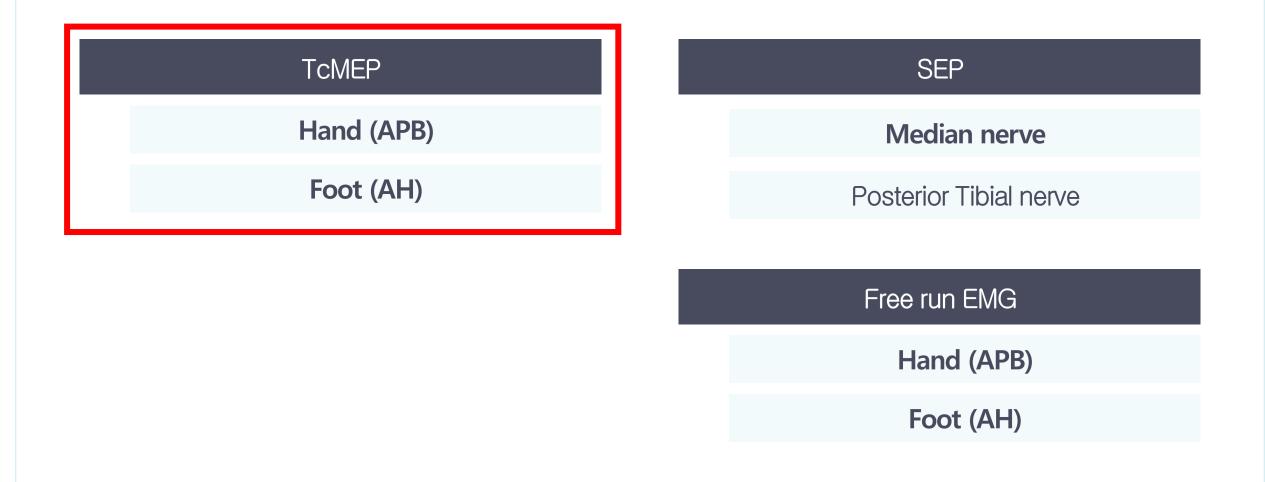
Consideration of IONM in spine surgery

Preoperative assessment

Intraoperative monitoring

- When
- What
- How

Preoperative assessment


- Past Medical & Surgical History
 - Pacemaker c defibrillator
- Radiologic images
- Electrodiagnostic study c Evoked Potentials
- Anesthetic Plan
- Surgical Plan & Procedure

Potential Risk of Surgery

IONM Plan

- Selection of modality
- Selection of Proper muscles

IONM modalities

Selection of Proper muscles

Spinal root myotomes

C1 – None

- C2 Sternocleidomastoid
- C3 Trapezius, sternocleidomastoid
- C4 Trapezius, levator scapulae
- C5 Deltoid, biceps
- C6 –Biceps, triceps, brachioradialis, pronator teres, flexor carpi radialis (FCR)
- C7 –Triceps, pronator teres, FCR, forearm extensors
- C8 –Triceps, ulnar forearm muscles, all hand intrinsic muscles (incl. abductor pollicis brevis, first dorsal interosseous, adductor digiti minimi)

T1 –Hand intrinsic muscles, flexor carpi ulnaris T2,T3, T4, T5, T6 – Intercostal muscles, paraspinal muscles

- T6,T7, T8 Upper rectus abdominis, paraspinal muscles, intercostal muscles
 T8,T9, T10 – Middle rectus abdominis, paraspinal muscles, intercostal muscles
 T10, T11, T12 – Lower rectus abdominis, paraspinal muscles, intercostal muscles
- L1 –Quadratus lumborum, paraspinals, cremaster ± iliopsoas ± internal oblique
- L2 –Iliopsoas, adductor longus, quadriceps, adductor magnus
- L3 –Quadriceps, adductor longus, adductor magnus, iliopsoas
- L4 –Quadriceps, tibialis anterior, adductor longus, adductor magnus, iliopsoas
- L5 –Tibialis anterior, peroneus longus, adductor magnus
- S1 Gastrocnemius, abductor hallucis
- S2 Gastrocnemius, abductor hallucis
- S2-S5 Anal sphincter, urethral sphincter

IONM - Positioning

- Risk
 - Spinal cord
 - Nerve root
 - Brachial plexus
 - Femoral nerve injury

IONM – Positioning

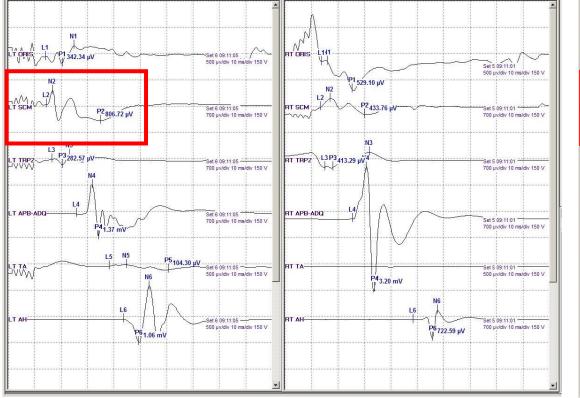
IONM - Positioning

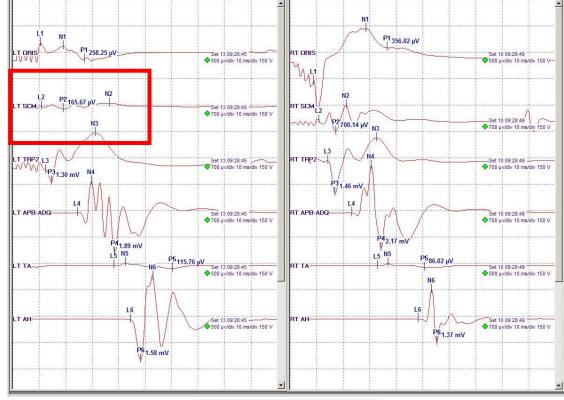
Table 3 Features of the five patients who presented IONM alerts during positioning.

Gender	Age	Diagnosis	Approach	Warning	Outcome
Male	50	Degenerative myelopathy	Anterior	Loss of MEPs in both AH and TA. Loss of cortical SEPs	Recovery after neck reposition. No deficit
Male	77	Degenerative myelopathy	Posterior	Loss of right TA and AH MEPs	Recovery after repositioning of the arms. No deficit
Male	50	Disc herniation	Anterior	Loss of both FDI, right TA and right AH. Loss of cortical SEPs	No recovery. Postsurgical deficit
Male	69	Degenerative myelopathy	Posterior	Loss of right FDI and both TA	Recovery after neck reposition. No deficit
Male	47	C5-C6 luxation	Posterior	Loss of MEPs in both AH and TA	Recovery after neck reposition. No deficit
	Male Male Male Male	Male 50 Male 77 Male 50 Male 69	Male50Degenerative myelopathyMale77Degenerative myelopathyMale50Disc herniationMale69Degenerative myelopathy	Male50Degenerative myelopathyAnteriorMale77Degenerative myelopathyPosteriorMale50Disc herniationAnteriorMale69Degenerative myelopathyPosterior	Male50Degenerative myelopathyAnteriorLoss of MEPs in both AH and TA. Loss of cortical SEPsMale77Degenerative myelopathyPosteriorLoss of right TA and AH MEPsMale50Disc herniationAnteriorLoss of both FDI, right TA and right AH. Loss of cortical SEPsMale69Degenerative myelopathyPosteriorLoss of right FDI and both TA

AH: Abducens Hallucis; FDI: First Dorsal Interosseus; TA: Tibial Anterior.

(Plata Bello et al., 2015)


IONM – Positioning


Cervical cord lesion d/t C1/2 instability

IONM – Positioning

Cervical cord lesion d/t C1/2 instability

Supine

Prone

IONM - Opertaion

Main Procedure

Laminectomy & Corpectomy

Lift of lamina

Cage placement

Correction of deformity

Direct Trauma

Bleeding

Positioning

Closing time

 Table 7. Intraoperative Neuromonitoring Profiles of the Cases and Postoperative Motor Deficit with Intraoperative Neurophysiologic Monitoring Changes During Cervical

 Open Door Laminoplasty

							MEP Ch	MEP Change		ange		
Patient Number	Diagnosis	MCL	OR Area (%)	Surgical Method	Time of IONM Change	Open Side of Laminas	Amplitude Decrease (50%)	Complete Loss	Amplitude Decrease (50%)	Complete Loss	Recovery of IONM Change	Postoperative Motor Deficit
1	OPLL	C5-6	43.4	В	After lift of all laminas	Left	Left deltoid				Full recovery	No deficit
2	OPLL	C3-4	48.8	А	After C3 laminectomy	Left	Right deltoid, left APB	Right APB, right TA			Partial recovery	No deficit
3	OPLL	C3-4	50.9	А	After C3 laminectomy	Left	Left deltoid, left triceps				Full recovery	No deficit
4	OPLL	C3-4	58.3	В	After lift of all laminas	Left			Left PT		Full recovery	No deficit
5	OPLL	C6-7	54.6	В	After lift of all laminas	Left	B/L APB, right deltoid, left TA				Full recovery	No deficit
6	OPLL	C3-4	48.1	В	After lift of all laminas	Left	B/L deltoid, TA, AH				Full recovery	No deficit
7	OPLL	C3-4	45.6	В	After lift of all laminas	Left	Left APB				Full recovery	No deficit
8	OPLL	C5-6	45.4	А	After C3 laminectomy	Right	B/L deltoid	Left AH			Partial recovery	No deficit
9	OPLL	C3-4	84.2	А	After C3 laminectomy	Left	Left TA, AH	B/L APB, right TA, right AH		Left median	Full recovery	No deficit
10	OPLL	C3-4	54.5	А	After C3 laminectomy	Left	Right deltoid			Left PT	Full recovery	No deficit
11	OPLL	C4-5	37.1	В	After lift of all laminas	Left		B/L TA, AH			Loss of EP (B/L TA and AH)	Left leg weakness
12	OPLL	C3-4	61.3	А	After C3 laminectomy	Left		Left APB, left AH	Left median		Partial recovery	No deficit
13	CSM	C4-5	38.6	В	After lift of all laminas	Right		B/L APB, right TA, right AH			Full recovery	No deficit

MCL, maximal compressive level; OR, occupying ratio; IONM, intraoperative neurophysiologic monitoring; MEP, motor evoked potential; SSEP, somatosensory evoked potential; OPLL, ossification of the posterior longitudinal ligament; APB, abductor pollicis brevis; TA, tibialis anterior; PT, posterior tibialis; B/L, bilateral; AH, abductor halluces; EP, evoked potential; CSM, cervical spondylotic myelopathy.

Author	A/G	Diagnosis	Procedure	ION	4		Treatment after 1 st operation	Post-OP symptoms	Post-OP MRI	Follow up
	,	5		Time of change	MEPs	SSEPs	_			
Chin et al. 2013 [30]	59/M	CSM	C4-5 & C5-6 ACDF	After cage placement at C5-6	Loss	Loss	C5 corpectomy High-dose steroid	C6 tetraplegia	T2-HI with swelling at C5	16 months partial recover
Zhang et al. 2013 [43]	58/F	CSM	C5 ACCF	N/A	L.		C3-6 laminoplasty High-dose steroid	Tetraplegia	T2-HI with swelling at C5	1 week full recovery
Lee et al. 2014 [9]	49/M	OPLL	C3-4 PCDF	N/A	L.		High-dose steroid	Tetraplegia	T2-HI with swelling at C3-4	12 months partial recover
	71/M	OPLL	C3-5 PCDF	N/A	L.		PDC at C2 High-dose steroid	Tetraplegia	T2-HI with swelling at C2-C6	3 months partial recover
Giammalva et al. 2017 [33]	64/M	CSM	C5-6 & C3-4 ACDF	After closing superficial planes	ţ	ţ	High-dose steroid	Tetraplegia	T2-HI at C5-6	7 days partial recover
Our case 2017	63/M	CSM	C3-5 PCDF	After lift of lamina	ţ	ţ	C6 upper laminectomy MAP > 95 mmHg High-dose steroid	Lt. hemiplegia	T2-HI at Lt. C3-4 with swelling	5 months full recovery
Vinodh et al. 2018 [44]	51/F	C3 body tumor	C2-5 PDC C1-2 & C5-6 PCDF	N/A			High-dose steroid	C3 tetraplegia	T2-HI with swelling into the medulla	6 weeks no improveme
Papaioannou et al. 2019 [35]	79/M	CSM	C3-6 PDC C2-7 PCDF	N/A	NC	NC	High-dose steroid	Tetraplegia	T2-HI at C6-7	18 months no improveme
Antwi et al. 2018 [31]	68/M	CSM	C4-7 PDC, C3-7 PCDF	After closing suprafascia	Loss of Lt.	NC	MAP > 113–115 mmHg Replacement of screw High-dose steroid	Lt. hemiplegia	T2-HI at Lt. C5-6	3 days partial recove
Wiginton et al. 2019 [6]	41/M	CSM	C1-2 PDC	After removal of posterior C1 arch	Loss of UE	Loss	MAP > 95 mmHg C2 upper laminectomy High-dose steroid	Tetraplegia	T2-HI at C1	N/A
Mathkour et al. 2020 [34]	79/M	CSM	C3-5 PDC C2-6 PCDF	After closing fascia	NC	ţ	MAP > 85 mmHg High-dose steroid	Worsened Rt. hemiparesis	T2-HI at C2-6	4 moths full recovery
Busack et al. 2020 [36]	63/M	CSM	C3-6 PDC, C2-T1 PCDF	After laminectomy	Loss	ţ	MAP > 85 mmHg High-dose steroid	Tetraplegia	N/A	1 month partial recove
un et al. 2020 [45]	49/F	CSR	C6-7 ACDF	N/A	L.		Laminoplasty C4-5-6-7 High-dose steroid	Paraplegia	T2-HI at C6-7	2 weeks full recovery
liao et al. 2020 [37]	51/M	CSM with OPLL	C3-4 PDC C2-5 PCDF	N/A	L.		High-dose steroid Manitol	Tetraplegia	T2-HI at C4-7	2 months full recovery

C5 palsy

Table 1	Table 1 Summary of patients which developed C5 nerve root palsy after surgery										
Patient	Sex	Age	Diagnosis	Laminectomy	TcMEPs	SSEPs	EMGs	Nerve root palsy	Paresis		
1	F	65	Cervical degenerative disc disease	PCF C5-T2/ laminectomy	No change	No change	2	Bilateral C5	Bilateral deltoid		
2	F	59	Cervical degenerative disc disease	PCF C2-T1/ laminectomy	No change	No change	2	Right C5	Right deltoid		
3	F	63	Cervical degenerative disc disease	C4-7 laminectomy/ foraminotoies	No change	No change	2	Left C5	Left paresis		
4	F	61	Cervical degenerative disc disease	C3-7 laminectomy/ fusion	No change	No change	2	None	None		
5	F	77	Cervical degenerative disc disease	ACDF C5-T1/PCF C5-T1	No change	No change	2	None	None		
6	Μ	61	Cervical myeloradiculopthy	PCF C3-6/ laminectomy	No change	No change	2	None	None		
7	Μ	70	Cervical degenerative disc disease	PCF C3-T2/ laminectomy	No change	No change	2	None	None		
8	Μ	63	Cervical myeloradiculopathy	PCF C2-T2/ laminectomy	No change	No change	2	None	None		
9	Μ	88	Cervical degenerative disc disease	PCF PCF C3-T1/ laminectomy	No change	No change	2	Bilateral C5	Bilateral deltoid		
10	М	73	Cervical myeloradiculopathy	PCF C2-T2/ laminectomy	No change	No change	2	None	None		
11	F	44	Cervical myeloradiculopathy	C4-7 Laminoplasty	No change	No change	Not recorded	Bilateral C5	Bilateral deltoid		

(Haghighi, Blaskiewicz, Ramirez, & Zhang, 2016)

IONM - Operation

Systemic Factors

Generalization & Gradual pattern

Upper limb controls during thoracic procedures

Technical Factors

Electrodes

Positioning & rechecking impedence

Pathologic Factors

Abrupt focal EP decrement

Mean BP > 80 - 95 mmHg

High dose steroid

Modification of surgical procedure

